lunes, 31 de octubre de 2011

Recapitulacion semana 12

Resumen del martes y jueves
Lectura del resumen por equipo
Aclaración de dudas
Ejercicio
Registro de asistencia.
Equipo
Resumen
1
El día Martes vimos el tema “Aplicaciones de la forma de calor: conducción, convección, radiación” e hicimos una práctica para comprobarlas. El jueves fue “Conservación de energía” , el funcionamiento del radiómetro y los conceptos del tema. :D
2
El día martes realizamos una actividad experimental sobre las formas de transmisión de calor, la conducción y convección, el día jueves la actividad se trato acerca como convertir el calor en energía con un radiómetro. Gracias
3
El martes realizamos experimentos relacionado son las aplicaciones de las formas de calor: conducción y convección, calentamos un par de barras de cobre y aluminio y sobre ellas colocamos parafina, calculamos en el tiempo en que tardó en derretirse, el jueves vimos como funcionaba un radiómetro con la energía solar.
4
El día martes hicimos un experimento con una parrilla eléctrica y unas barras de aluminio  en donde calentamos u pedazo de parafina para ver el tema aplicaciones de las formas de calor. El jueves utilizamos un radiómetro para ver el tema de conservación de la energía
5
El día martes hicimos un experimento con unas barras de metal y cobre en los cuales determinábamos el tipo de transmisión de calor a los materiales. El día jueves vimos en línea el simulador del efecto de joule y observamos el radiómetro de crookes que se mueve con la energía solar.
6
El martes hicimos un experimento con una barra de metal, una de cobre y un pedazo de cera en el que vimos que tipo de transmisión de calor se producía. El jueves vimos el radiómetro y cómo funcionaba con la luz del sol. Después vimos en línea el simulador del efecto de joule.

Semana 12 Jueves

35 Conservación de la Energía
Preguntas
¿En qué consiste la conservación de la energía?
¿Cómo se puede transformar la energía del Sol?
¿Qué es un colector de energía solar de placa plana?
¿Qué es un colector concentrador de energía solar?
¿En qué consiste un horno solar?
¿En qué consiste una casa inteligente?
Equipo
1
2
3
4
5
6
Respuestas
La ley de la conservación de la energía constituye el primer principio de la termodinámica y afirma que la cantidad total de energía en cualquier sistema aislado (sin interacción con ningún otro sistema) permanece invariable con el tiempo, aunque dicha energía puede transformarse en otra forma de energía. En resumen, la ley de la conservación de la energía afirma que la energía no puede crearse ni destruirse, sólo se puede cambiar de una forma a otra, por ejemplo, cuando la energía eléctrica se transforma en energía calorífica en un calefactor. Dicho de otra forma: la energía puede transformarse de una forma a otra o transferirse de un cuerpo a otro, pero en su conjunto permanece estable (o constante).
Conversión de la energía solar en electricidad.
Aproximadamente el 30.0 por ciento de la energía solar que alcanza el borde exterior de la atmósfera se consume en el ciclo del agua, mismo que produce la lluvia y la energía potencial de las corrientes de montaña y de los ríos.
Son celdas que absorben la energía del sol para luego transformarla en energía eléctrica
es cualquier dispositivo diseñado para recoger la energía irradiada por el sol y convertirla en energía térmica.
Consiste en colocar espejos para que los rayos del Sol se reflejen y estos produzcan energía.
Una casa inteligente tiene sistemas electrónicos que ayudan a lograr la eficiencia y el aprovechamiento máximo de todos los recursos en la casa en todos los sentidos, es por eso que es llamada inteligente. La eficiencia de la casa puede cuidar el medio ambiente ahorrando energía. La casa inteligente debe tener la posibilidad de crear diferentes escenarios de iluminación dependiendo de las actividades dentro de la casa.

Actividad con el simulador:
En el experimento de Joule se determina el equivalente mecánico del calor, es decir, la relación entre la unidad de energía joule (julio) y la unidad de calor caloría.
Mediante esta experiencia simulada, se pretende poner de manifiesto la gran cantidad de energía que es necesario transformar en calor para elevar apreciablemente la temperatura de un volumen pequeño de agua.

Equipo
Masa       m
50 kg      0.1 kg
Altura
Temperatura Inicial    
20 oC
                  final
Q =Mgh/m(tf-ti)
1
50 kg      0.1 kg
40 cm
20.5
392.4 joules
2
50 kg      0.1 kg
50 cm
20.6
408.7 joules
3
50 kg      0.1 kg
60 cm
20.7
420 joules
4
50 kg      0.1 kg
70 cm
20.8
429 joules
5
50 kg      0.1 kg
80 cm
20.9
435.55 joules
6
50 kg      0.1 kg
100 cm
21.2
408.75 joules

Graficas de Q-altura.

Semana 12 Martes

F1 Semana 12 martes
34 Aplicaciones de las formas de calor: conducción, convección, radiación.
Preguntas
¿Cuándo se presenta  la transmisión de  energía térmica?
¿Cuáles son la forma de transmisión de la energía térmica?
¿En qué consiste la conducción térmica?
¿En qué consiste la convección térmica?
¿En qué consiste la radiación térmica?
¿Cuáles materiales son buenos o malos transmisores de la energía térmica?
Equipos
5
1
2
4
3
6
Respuestas
Cuando ambos cuerpos igualan sus temperaturas
Se transfiere mediante conveccion, radiación o conduccion….
No se comprende en su totalidad el mecanismo exacto de la conducción de calor en los solidos, pero se cree que se debe, en parte, al movimiento de electrones libres que transportan energía cuando existe una diferencia de temperatura.
Traspasa el calor entre zonas con diferentes temperaturas. Se produce únicamente por medio de materiales fluidos. Esto al calentarse, aumenta el volumen y por lo tanto, su densidad disminuye y ascocian desplazando el fluido que se aumenta en la parte superior y que esta es menor temperatura
Consiste en la propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacio material.
Los conductores eléctricos suelen ser buenos conductores de calor (los metales).

Discusión sobre la forma de transmisión de energía térmica en la calefacción o en el aire
Acondicionado.

Material: Sistema de calentamiento, placas de metal, parafina, matraz erlenmeyer de 250 ml, aserrín, lámpara, radiómetro de Crookes(http://cdpdp.blogspot.com/2008/04/radiometro.html?
Procedimiento:
    1.-Colocar  en la placa de metal una  muestra de para fina, colocar la placa de metal sobre la tela de alambre con asbesto y calentar lentamente medir el tiempo de cambio de estado de la parafina.       
   -2.-Colocar 100 ml de agua en el matraz erlenmeyer, adicionar una muestra de aserrín, colocar el matraz erlenmeyer sobre la malla de alambre y calentar tomar la temperatura cada minuto hasta evaporación (graficar tiempo-temperatura), observar lo que ocurre con el aserrín.
     3.-Colocar el radiómetro sobre la mesa y enfocar la luz de la lámpara a la parte oscura del radiómetro, medir el número de vueltas por minuto. Tabular y graficar los datos.





Semana 11 Jueves

Semana 11 Jueves
32 Calores específico y latente.
Preguntas
¿Qué es el calor específico de una sustancia?
¿Cómo se calcula el calor específico de una sustancia?
Ejemplo de calores específicos de las sustancias
¿Qué es el calor latente de una sustancia?
¿Cuál es el modelo matemático del calor latente de las sustancias?
¿Que unidades se emplean en el calor especifico de una sustancia y el calor latente?
Equipo
3
2
1
5
4
6
Respuestas
Es la cantidad necesaria para elevar la temperatura de una unidad de masa de una sustancia en un grado.
Q=m.c.  T
Material
Calor específico
J/(kg·Kº)
Aceite oliva
2000
Acero
460
Acero Inoxidable
510
Aire
1010
Agua
4186
Aluminio
880
Cobre
390
Estaño
230
Granito
800
Hierro
450
Madera
1760
Mercurio
138
Oro
130
Plata
235
Platino
130
Plomo
130
Sodio
1300
Es la energía requerida por una sustancia para cambiar la fase de solido a liquido y de liquido a gaseoso
Calor latente.
[Lf]=[Cal/g]

Calor específico
J/(kg·Kº)

                                                             Calor específico y calor latente.
Q= m.Cp(Tf-Ti)
Q= Energía transferida se mide en calorías
                                                                                 PCI Kj/Kg                                PCS Kj/
Alcohol comercial
23860
26750

Cp = Calor especifico del material Cal/oC.Gramos
M = masa del material en gramos.
Ti= Temperatura inicial oC
Tf =Temperatura final oC
Material: Vaso de precipitados de 250 ml, sistema de calentamiento, placas de aluminio, cobre, balanza, calorímetro, pinzas para crisol.
Procedimiento:
Pesar las placas de aluminio y cobre.
Pesar 100 ml de agua en el vaso de precipitados.
Colocar la barra de metal en  el vaso de precipitados y calentar hasta ebullición.
Con las pinzas colocar la barra de metal en el calorímetro con 100ml de agua, midiendo su temperatura inicial y final de equilibrio.
Observaciones:

Temp Metal
Masa gramos
Temperatura inicial del agua
Temperatura de equilibrio
                Calculo del calor especifico
 Cp = Q/m(Tf-Ti)
Aluminio
cobre